File Sorts_ProofSystem
From MatchingLogic Require Export Sorts_Syntax
MLPM
FOEquality_ProofSystem.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations.
Open Scope list_scope.
Local Lemma simplTest
{Σ : Signature}
{syntax : Sorts_Syntax.Syntax}
(Γ : Theory)
(φ ψ τ: Pattern)
(s : symbols) x:
well_formed (ex , φ) →
well_formed ψ →
well_formed τ →
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢ ((all ψ , φ) ---> ex ψ , φ)^[[evar:x↦τ]].
Lemma ex_sort_impl_ex
{Σ : Signature}
{syntax : Sorts_Syntax.Syntax}
(Γ : Theory)
(ϕ : Pattern)
(s : symbols)
:
well_formed (ex , ϕ) →
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢ (ex (patt_sym s) , ϕ) ---> (ex , ϕ).
Theorem top_includes_everything {Σ : Signature} {syntax : Sorts_Syntax.Syntax}:
∀ (Γ : Theory) (x : evar),
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢i patt_free_evar x ∈ml patt_top using AnyReasoning.
MLPM
FOEquality_ProofSystem.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations.
Open Scope list_scope.
Local Lemma simplTest
{Σ : Signature}
{syntax : Sorts_Syntax.Syntax}
(Γ : Theory)
(φ ψ τ: Pattern)
(s : symbols) x:
well_formed (ex , φ) →
well_formed ψ →
well_formed τ →
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢ ((all ψ , φ) ---> ex ψ , φ)^[[evar:x↦τ]].
Lemma ex_sort_impl_ex
{Σ : Signature}
{syntax : Sorts_Syntax.Syntax}
(Γ : Theory)
(ϕ : Pattern)
(s : symbols)
:
well_formed (ex , ϕ) →
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢ (ex (patt_sym s) , ϕ) ---> (ex , ϕ).
Theorem top_includes_everything {Σ : Signature} {syntax : Sorts_Syntax.Syntax}:
∀ (Γ : Theory) (x : evar),
Definedness_Syntax.theory ⊆ Γ →
Γ ⊢i patt_free_evar x ∈ml patt_top using AnyReasoning.
This page has been generated by coqdoc