File ProductSort_ProofSystem
From MatchingLogic Require Export Sorts_ProofSystem
ProductSort.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations
MatchingLogic.Theories.ProductSort.Notations.
Open Scope list_scope.
Section productsort.
Context
{Σ : Signature}
(s1 s2 : Pattern)
(wfs1 : well_formed s1 = true)
(wfs2 : well_formed s2 = true)
{syntax : ProductSort.Syntax s1 s2}
.
Lemma use_productsort_axiom ax Γ :
ProductSort.theory s1 s2 wfs1 wfs2 ⊆ Γ →
Γ ⊢ axiom _ _ ax.
Theorem prod_sort : ∀ Γ , theory s1 s2 wfs1 wfs2 ⊆ Γ →
Γ ⊢ all mlProd(s1,s2), ex s1, ex s2, ( b1 ∷ s1 , b0 ∷ s2 ) =ml b2 .
End productsort.
ProductSort.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations
MatchingLogic.Theories.ProductSort.Notations.
Open Scope list_scope.
Section productsort.
Context
{Σ : Signature}
(s1 s2 : Pattern)
(wfs1 : well_formed s1 = true)
(wfs2 : well_formed s2 = true)
{syntax : ProductSort.Syntax s1 s2}
.
Lemma use_productsort_axiom ax Γ :
ProductSort.theory s1 s2 wfs1 wfs2 ⊆ Γ →
Γ ⊢ axiom _ _ ax.
Theorem prod_sort : ∀ Γ , theory s1 s2 wfs1 wfs2 ⊆ Γ →
Γ ⊢ all mlProd(s1,s2), ex s1, ex s2, ( b1 ∷ s1 , b0 ∷ s2 ) =ml b2 .
End productsort.
This page has been generated by coqdoc