File FreshnessApplicationCtx
From MatchingLogic Require Export Substitution
Freshness
ApplicationContext.
Import Substitution.Notations.
Section lemmas.
Context {Σ : Signature}.
Open Scope ml_scope.
Lemma evar_is_fresh_in_subst_ctx x AC p:
evar_is_fresh_in x (subst_ctx AC p)
↔ (evar_is_fresh_in x p ∧ x ∉ AC_free_evars AC).
Lemma wf_ex_eq_sctx_eo AC x p:
well_formed (patt_exists p) = true →
well_formed (patt_exists ((subst_ctx AC (p^{evar: 0 ↦ x}))^{{evar: x ↦ 0}})) = true.
Lemma subst_ctx_bevar_subst AC p q n:
subst_ctx AC (p^[evar: n ↦ q]) = (subst_ctx AC p)^[evar: n ↦ q].
End lemmas.
Freshness
ApplicationContext.
Import Substitution.Notations.
Section lemmas.
Context {Σ : Signature}.
Open Scope ml_scope.
Lemma evar_is_fresh_in_subst_ctx x AC p:
evar_is_fresh_in x (subst_ctx AC p)
↔ (evar_is_fresh_in x p ∧ x ∉ AC_free_evars AC).
Lemma wf_ex_eq_sctx_eo AC x p:
well_formed (patt_exists p) = true →
well_formed (patt_exists ((subst_ctx AC (p^{evar: 0 ↦ x}))^{{evar: x ↦ 0}})) = true.
Lemma subst_ctx_bevar_subst AC p q n:
subst_ctx AC (p^[evar: n ↦ q]) = (subst_ctx AC p)^[evar: n ↦ q].
End lemmas.
This page has been generated by coqdoc