File Bool_ProofSystem
From MatchingLogic Require Export Sorts_ProofSystem
Bool_Syntax.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations
MatchingLogic.Theories.Bool_Syntax.Notations.
Open Scope list_scope.
Section bools.
Context
{ Σ : Signature}
{ syntax : Syntax}.
Lemma use_bool_axiom ax Γ :
Bool_Syntax.theory ⊆ Γ →
Γ ⊢ axiom ax.
Lemma functional_pattern_defined :
∀ Γ φ, Definedness_Syntax.theory ⊆ Γ → well_formed φ →
Γ ⊢ (ex , (φ =ml b0)) ---> ⌈ φ ⌉.
Lemma membership_equal_equal :
∀ Γ φ φ',
Definedness_Syntax.theory ⊆ Γ → mu_free φ' →
well_formed φ → well_formed φ' →
Γ ⊢ (ex , (φ =ml b0)) →
Γ ⊢ (ex , (φ' =ml b0)) →
Γ ⊢ (φ ∈ml φ') =ml (φ =ml φ') .
Theorem double_neg : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, (!b !b b0) =ml b0.
Theorem true_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 &&ml mlTrue =ml b0.
Theorem false_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 &&ml mlFalse =ml mlFalse.
Theorem comm_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, all mlBool, b0 &&ml b1 =ml b1 &&ml b0.
Theorem true_andThenBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 andThen mlTrue =ml b0.
Theorem false_andThenBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all, b0 andThen mlFalse =ml mlFalse.
End bools.
Close Scope ml_scope.
Close Scope string_scope.
Close Scope list_scope.
Bool_Syntax.
Import MatchingLogic.Logic.Notations
MatchingLogic.Theories.Definedness_Syntax.Notations
MatchingLogic.Theories.Sorts_Syntax.Notations
MatchingLogic.Theories.Bool_Syntax.Notations.
Open Scope list_scope.
Section bools.
Context
{ Σ : Signature}
{ syntax : Syntax}.
Lemma use_bool_axiom ax Γ :
Bool_Syntax.theory ⊆ Γ →
Γ ⊢ axiom ax.
Lemma functional_pattern_defined :
∀ Γ φ, Definedness_Syntax.theory ⊆ Γ → well_formed φ →
Γ ⊢ (ex , (φ =ml b0)) ---> ⌈ φ ⌉.
Lemma membership_equal_equal :
∀ Γ φ φ',
Definedness_Syntax.theory ⊆ Γ → mu_free φ' →
well_formed φ → well_formed φ' →
Γ ⊢ (ex , (φ =ml b0)) →
Γ ⊢ (ex , (φ' =ml b0)) →
Γ ⊢ (φ ∈ml φ') =ml (φ =ml φ') .
Theorem double_neg : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, (!b !b b0) =ml b0.
Theorem true_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 &&ml mlTrue =ml b0.
Theorem false_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 &&ml mlFalse =ml mlFalse.
Theorem comm_andBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, all mlBool, b0 &&ml b1 =ml b1 &&ml b0.
Theorem true_andThenBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all mlBool, b0 andThen mlTrue =ml b0.
Theorem false_andThenBool : ∀ Γ , theory ⊆ Γ →
Γ ⊢ all, b0 andThen mlFalse =ml mlFalse.
End bools.
Close Scope ml_scope.
Close Scope string_scope.
Close Scope list_scope.
This page has been generated by coqdoc